H(t)=-t^2+6t+10

Simple and best practice solution for H(t)=-t^2+6t+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-t^2+6t+10 equation:



(H)=-H^2+6H+10
We move all terms to the left:
(H)-(-H^2+6H+10)=0
We get rid of parentheses
H^2-6H+H-10=0
We add all the numbers together, and all the variables
H^2-5H-10=0
a = 1; b = -5; c = -10;
Δ = b2-4ac
Δ = -52-4·1·(-10)
Δ = 65
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{65}}{2*1}=\frac{5-\sqrt{65}}{2} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{65}}{2*1}=\frac{5+\sqrt{65}}{2} $

See similar equations:

| -4(c+2)=4 | | -4(c+2)=6 | | 3(3x+10)=-15 | | a-11/12=5/12 | | 4x-20=300 | | -20=4(2x-7) | | 42p-4=7 | | -4(c+2)=12 | | 30k+80=20+110 | | 6(4x+1)=-18 | | 7m-9=54 | | a-811/12=65/12 | | x+.3x=2630 | | y=0.25(20)+3 | | 4x–10=22 | | 2x+3+4x+5=32 | | 8x+5(5)-(-4)=0 | | x+.30x=2629.6 | | 4(3x-5)=3(4+2x) | | 10y-13=7 | | 5(x–4)=2x+4. | | (6-21+2y)=3(2y+10) | | 5(x-2)=88 | | (6-22+2y)=3(2y+10) | | X-2/9.5=x+2/12 | | 3(5-t)=2-(2-2t) | | 16x=1116.8 | | 1=m/3−3 | | 10x^2-40x+3200=0 | | 6x+3(x+4)=12 | | 3x+26=17 | | 1.25=x/2x |

Equations solver categories